CÁCH TÌM ĐIỀU KIỆN XÁC ĐỊNH

     
Lớp 1

Đề thi lớp 1

Lớp 2

Lớp 2 - Kết nối tri thức

Lớp 2 - Chân trời sáng tạo

Lớp 2 - Cánh diều

Tài liệu tham khảo

Lớp 3

Lớp 3 - Kết nối tri thức

Lớp 3 - Chân trời sáng tạo

Lớp 3 - Cánh diều

Tài liệu tham khảo

Lớp 4

Sách giáo khoa

Sách/Vở bài tập

Đề thi

Lớp 5

Sách giáo khoa

Sách/Vở bài tập

Đề thi

Lớp 6

Lớp 6 - Kết nối tri thức

Lớp 6 - Chân trời sáng tạo

Lớp 6 - Cánh diều

Sách/Vở bài tập

Đề thi

Chuyên đề & Trắc nghiệm

Lớp 7

Lớp 7 - Kết nối tri thức

Lớp 7 - Chân trời sáng tạo

Lớp 7 - Cánh diều

Sách/Vở bài tập

Đề thi

Chuyên đề & Trắc nghiệm

Lớp 8

Sách giáo khoa

Sách/Vở bài tập

Đề thi

Chuyên đề & Trắc nghiệm

Lớp 9

Sách giáo khoa

Sách/Vở bài tập

Đề thi

Chuyên đề & Trắc nghiệm

Lớp 10

Lớp 10 - Kết nối tri thức

Lớp 10 - Chân trời sáng tạo

Lớp 10 - Cánh diều

Sách/Vở bài tập

Đề thi

Chuyên đề & Trắc nghiệm

Lớp 11

Sách giáo khoa

Sách/Vở bài tập

Đề thi

Chuyên đề & Trắc nghiệm

Lớp 12

Sách giáo khoa

Sách/Vở bài tập

Đề thi

Chuyên đề & Trắc nghiệm

IT

Ngữ pháp Tiếng Anh

Lập trình Java

Phát triển web

Lập trình C, C++, Python

Cơ sở dữ liệu


*

Chuyên đề Toán 9Chuyên đề: Hệ hai phương trình bậc nhất hai ẩnChuyên đề: Phương trình bậc hai một ẩn sốChuyên đề: Hệ thức lượng trong tam giác vuôngChuyên đề: Đường trònChuyên đề: Góc với đường trònChuyên đề: Hình Trụ - Hình Nón - Hình Cầu
Tìm điều kiện xác định của biểu thức chứa căn thức cực hay
Trang trước
Trang sau

Tìm điều kiện xác định của biểu thức chứa căn thức cực hay

Phương pháp giải

+ Hàm số √A xác định ⇔ A ≥ 0.

+ Hàm phân thức xác định ⇔ mẫu thức khác 0.

Ví dụ minh họa

Ví dụ 1: Tìm điều kiện của x để các biểu thức sau có nghĩa:

*

Hướng dẫn giải:

a)

*
xác định ⇔ -7x ≥ 0 ⇔ x ≤ 0.

Bạn đang xem: Cách tìm điều kiện xác định

b)

*
xác định ⇔ 2x + 6 ≥ 0 ⇔ 2x ≥ -6 ⇔ x ≥ -3.

*

Ví dụ 2: Tìm điều kiện xác định của các biểu thức sau:

*

Hướng dẫn giải:

a)

*
xác định

⇔ (x + 2)(x – 3) ≥ 0

*

Vậy điều kiện xác định của biểu thức là x ≥ 3 hoặc x ≤ -2.

b)

*
xác định

*

⇔ x4 – 16 ≥ 0

⇔ (x2 – 4)(x2 + 4) ≥ 0

⇔ (x – 2)(x + 2)(x2 + 4) ≥ 0

⇔ (x – 2)(x + 2) ≥ 0 (vì x2 + 4 > 0).

*

Vậy điều kiện xác định của biểu thức là x ≥ 2 hoăc x ≤ -2 .

c)

*
xác định

⇔ x + 5 ≠ 0

⇔ x ≠ -5.

Vậy điều kiện xác định của biểu thức là x ≠ 5.

Ví dụ 3: Tìm điều kiện xác định của biểu thức

*

Hướng dẫn giải:

Biểu thức M xác định khi

*

Từ (*) và (**) suy ra không tồn tại x thỏa mãn.

Vậy không có giá trị nào của x làm cho hàm số xác định.

Ví dụ 4: Tìm điều kiện xác định của biểu thức:

*

Hướng dẫn giải:

Biểu thức P xác định

*

Giải (*) : (3 – a)(a + 1) ≥ 0

*

⇔ -1 ≤ a ≤ 3

Kết hợp với điều kiện a ≥ 0 và a 4 ta suy ra 0 ≤ a ≤ 3.

Vậy với 0 ≤ a ≤ 3 thì biểu thức P xác định

Bài tập trắc nghiệm tự luyện

Bài 1: Biểu thức

*
xác định khi :

A. x ≤ 1 B. x ≥ 1. C. x > 1D. x Hiển thị đáp án

Đáp án: B

Giải thích:

√(x-1) xác định ⇔ x – 1 ≥ 0 ⇔ x ≥ 1.


Bài 2:

*
xác định khi:

A. x ≥ 1B. x ≤ 1C. x = 1 D. x ∈ ∅.

Hiển thị đáp án

Đáp án: C

*

*
xác định

⇔ -(x-1)2 ≥ 0 ⇔ (x-1)2 ≤ 0 ⇔ (x-1)2 = 0 ⇔ x =1.


Bài 3:

*
xác định khi :

A. x ≥ 3 và x ≠ -1B. x ≤ 0 và x ≠ 1

C. x ≥ 0 và x ≠ 1D. x ≤ 0 và x ≠ -1

Hiển thị đáp án

Đáp án: D

*
xác định

Bài 4: Với giá trị nào của x thì biểu thức

*
xác định

A. x ≠ 2.B. x 2D. x ≥ 2.

Hiển thị đáp án

Đáp án: C

*
xác định

Bài 5: Biểu thức

*
xác định khi:

A. x ≥ -4. B. x ≥ 0 và x ≠ 4.

C. x ≥ 0D. x = 4.

Hiển thị đáp án

Đáp án: B

*
xác định

Bài 6: Với giá trị nào của x thì các biểu thức sau có nghĩa?

*

Hướng dẫn giải:

a)

*
xác định xác định ⇔ -x ≥ 0 ⇔ x ≤ 0

b)

*
xác định xác định ⇔ 2x + 3 ≥ 0 ⇔ 2x ≥ -3 ⇔ x ≥ -3/2

c)

*
xác định xác định ⇔ 5 – 2x ≥ 0 ⇔ 2x ≤ 5 ⇔ x ≤ 5/2 .

d)

*
xác định xác định ⇔ x – 1 ≠ 0 ⇔ x ≠ 1.

Bài 7: Tìm điều kiện xác định của các biểu thức sau:

*

Hướng dẫn giải:

a)

*
xác định ⇔ (2x + 1)(x – 2) ≥ 0

*

Vậy biểu thức xác định với mọi giá trị x ≥ 2 hoặc x ≤ -1/2 .

Xem thêm: Main Bo Mạch Tủ Lạnh Lg Inverter Giá Rẻ, Bo Mạch Tủ Lạnh Lg

b)

*
xác định ⇔ (x + 3)(3 – x) ≥ 0

*

Vậy biểu thức xác định với mọi giá trị x thỏa mãn

c)

*
xác định ⇔ |x + 2| ≥ 0 (thỏa mãn với mọi x)

Vậy biểu thức xác định với mọi giá trị của x.

d)

*
xác định ⇔ (x – 1)(x – 2)(x – 3) ≥ 0.

Ta có bảng xét dấu:

*

Từ bảng xét dấu nhận thấy (x – 1)(x – 2)(x – 3) ≥ 0 nếu 1 ≤ x ≤ 2 hoặc x ≥ 3.

Bài 8: Khi nào các biểu thức sau tồn tại?

*

Hướng dẫn giải:

a)

*
xác định ⇔ (a – 2)2 ≥ 0 (đúng với mọi a)

Vậy biểu thức xác định với mọi giá trị của a.

b)

*
xác định với mọi a.

Vậy biểu thức xác định với mọi giá trị của a.

c)

*
xác định ⇔ (a – 3)(a + 3) ≥ 0

*

Vậy biểu thức xác định với các giá trị a ≥ 3 hoặc a ≤ -3.

Xem thêm: Tuổi Bính Tuất Mua Xe Ngày Nào Tốt, May Mắn Trong Năm 2022?

d)Ta có: a2 + 4 > 0 với mọi a nên biểu thức

*
luôn xác định với mọi a.

Bài 9: Mỗi biểu thức sau xác định khi nào?

*

Hướng dẫn giải:

a)

*
xác định

*
⇔ x – 2 > 0 ⇔ x > 2.

b)

*
xác định

⇔ x2 – 3x + 2 > 0

⇔ (x – 2)(x – 1) > 0

*

Vậy biểu thức xác định khi x > 2 hoặc x

CHỈ CÒN 250K 1 KHÓA HỌC BẤT KÌ, goodsmart.com.vn HỖ TRỢ DỊCH COVID

Phụ huynh đăng ký mua khóa học lớp 9 cho con, được tặng miễn phí khóa ôn thi học kì. Cha mẹ hãy đăng ký học thử cho con và được tư vấn miễn phí. Đăng ký ngay!