$sin^4x+cos^4x$I should rewrite this expression into a new form to plot the function.

Bạn đang xem: Trigonometry

eginalign& = (sin^2x)(sin^2x) - (cos^2x)(cos^2x) \& = (sin^2x)^2 - (cos^2x)^2 \& = (sin^2x - cos^2x)(sin^2x + cos^2x) \& = (sin^2x - cos^2x)(1) longrightarrow,= sin^2x - cos^2xendalign

Is that true?



eginalignsin^4 x +cos^4 x&=sin^4 x +2sin^2xcos^2 x+cos^4 x - 2sin^2xcos^2 x\&=(sin^2x+cos^2 x)^2-2sin^2xcos^2 x\&=1^2-frac12(2sin xcos x)^2\&=1-frac12sin^2 (2x)\&=1-frac12left(frac1-cos 4x2 ight)\&=frac34+frac14cos 4xendalign


Let $$displaystyle y=sin^4 x+cos^4 x = left(sin^2 x+cos^2 x ight)^2-2sin^2 xcdot cos^2 x = 1-frac12left(2sin xcdot cos x ight)^2$$

Now using $$ sin 2A = 2sin Acos A$$

So, we get $$displaystyle y=1-frac12sin^2 2x$$



Note that $a^2 + b^2 = (a+b)^2 - 2ab$

$$(sin^2 x)^2 + (cos^2 x)^2 = (sin^2 x + cos^2 x)^2 - 2sin^2 xcos^2 x =(sin^2 x + cos^2 x)^2 - 2(sin xcos x)^2 = \ 1 -frac sin^2 2x2$$

Note the following results:

$$ sin^2 x + cos^2 x = 1$$

$$ sin x cos x = fracsin 2x2$$

Expand in terms of complex exponentials.

$$sin^4 x + cos^4 x = left( frace^ix - e^-ix2i ight)^4 + left( frace^ix + e^-ix2 ight)^4$$

Notice that $i^4 = +1$, so we get

$$sin^4 x + cos^4 x = frac116 left( 2e^4ix + 2 e^-4ix + 12 ight)$$

where we use the relation $(a+b)^4 = a^4 + 4 a^3 b + 6 a^2 b^2 + 4 ab^3 + b^4$. The terms of the khung $a^3 b$ & $ab^3$ all cancel by addition.

This leaves us with a final result:

$$sin^4 x + cos^4 x = frac416 left(frace^4ix + e^-4ix2 ight) + frac1216 = frac34 + frac14 cos 4x$$

nội dung
answered Sep 30, 2015 at 17:14
19.1k11 gold badge2727 silver badges5757 bronze badges
địa chỉ cửa hàng a phản hồi |
If you want khổng lồ express in functions of higher frequencies lượt thích this $$sum_k=0^N sin(kx) + cos(kx)$$ Then you can use the Fourier transform together with convolution theorem. This will work out for any sum of powers of cos và sin, even $sin^666(x)$.

nội dung
answered Sep 30, năm ngoái at 17:09
24.6k99 gold badges3333 silver badges8585 bronze badges
địa chỉ cửa hàng a phản hồi |

Your Answer

Thanks for contributing an answer khổng lồ Stack Exchange!

Please be sure to answer the question. Provide details & share your research!

But avoid

Asking for help, clarification, or responding to other answers.Making statements based on opinion; back them up with references or personal experience.

Xem thêm: Góc Ở Đỉnh Của Hình Nón - Cho Góc Ở Đỉnh Của Một Hình Nón Bằng 60O

Use to lớn format equations. reference.

To learn more, see our tips on writing great answers.

Draft saved
Draft discarded

Sign up or log in

Sign up using Google
Sign up using Facebook
Sign up using email and Password

Post as a guest

email Required, but never shown

Post as a guest


Required, but never shown

Post Your Answer Discard

By clicking “Post Your Answer”, you agree to our terms of service, privacy policy và cookie policy

Not the answer you're looking for? Browse other questions tagged or ask your own question.
Featured on Meta
Deriving an expression for $cos^4 x + sin^4 x$
Find $int_0^2pi frac1sin^4x + cos^4x dx$.

Xem thêm: Top 9 Bài Cảm Nhận Về Thời Khắc Chuyển Mùa Hạ Sang Thu, Cảm Nhận Về Thời Khắc Chuyển Mùa Hạ Sang Thu

Trigonometric Identities: $fracsin^2 heta1+cos heta=1-cos heta$
Simplifying second derivative using trigonometric identities
Simplify $-2sin(x)cos(x)-2cos(x)$
Simplify the expression và leave answer in terms of $sin x$ and/or $cos x$
How can we bound $fracsin( heta)cos( heta)cos( heta)$
Minimum value of $cos^2 heta-6sin heta cos heta+3sin^2 heta+2$
Transforming the equation $cot x -cos x = 0$ into the khung $cos x(1- sin x) = 0$
Simplify: $fracsin(3x-y)-sin(3y-x)cos(2x)+cos(2y) $
Simplify trigonometric expression using trigonometric identities
Hot Network Questions more hot questions

Question feed
Subscribe lớn RSS
Question feed to lớn subscribe to lớn this RSS feed, copy and paste this URL into your RSS reader.
Stack Exchange Network
Site kiến thiết / biểu tượng logo © 2022 Stack Exchange Inc; user contributions licensed under CC BY-SA. Rev2022.12.2.43073

Your privacy

By clicking “Accept all cookies”, you agree Stack Exchange can store cookies on your device và disclose information in accordance with our Cookie Policy.